Ο Κώστας στο μάθημα των μαθηματικών θα διαγωνιστεί σε τέσσερα διαγωνίσματα των 100 βαθμών το καθένα. Έθεσε ως στόχο να συγκεντρώσει μέσο όρο τουλάχιστον 95 βαθμούς. Στα δύο πρώτα διαγωνίσματα συγκέντρωσε 97 μονάδες στο πρώτο και 91 μονάδες στο δεύτερο. Όταν είδε το βαθμό του τρίτου διαγωνίσματος επιβεβαιώθηκε ότι υπήρχαν ακόμα περιθώρια για να φτάσει στο στόχο του. Ποιος θα μπορούσε να ήταν ο πιο χαμηλός βαθμός του 3ου διαγωνίσματος;
Παρασκευή 10 Μαρτίου 2023
Οι Ηλικίες
Το γινόμενο των ηλικιών μιας μητέρας και των τριών παιδιών της ισούται με 41.041.
Να βρεθούν:(α) Οι ηλικίες των παιδιών.
(β) Η ηλικία της μητέρας.
(γ) Πριν πόσα χρόνια το γινόμενο των ηλικιών των παιδιών της ήταν ίσο με την ηλικία της μητέρας;
Λύση
Πριν 6 χρόνια το γινόμενο των ηλικιών των παιδιών της ήταν ίσο με την ηλικία της μητέρας. Αναλύουμε τον αριθμό 41.041 σε γινόμενο πρώτων παραγόντων κι’ έχουμε:
41.041=7*11*13*41
Επομένως οι ηλικίες των τριών παιδιών είναι:
(α) 7 ετών, 11 ετών, και 13 ετών αντιστοίχως.
(β)Και της μητέρας η ηλικία είναι: 41 ετών.
(γ) Έστω ότι πριν από «y» χρόνια το γινόμενο των ηλικιών των παιδιών ήταν ίσο με την ηλικία της μητέρας.
Πριν «y» χρόνια ήταν:
Ηλικία μητέρας: (41–y)
Ηλικίες παιδιών: (7–y), (11–y), και (13–y) αντίστοιχα.
Βάσει των δεδομένων της εκφώνησης του προβλήματος έχουμε την εξίσωση:
(41–y) = (7–y)*(11–y)*(13–y) (1)
(41–y) = -y^3+31*y^2–311*y+1.001
y^3–31*y^2+310*y–960=0
(y–6)*(y^2–25*y+160)=0
(y–6) = 0 ή (y^2–25*y+160)=0 (αδύνατη, διότι έχει Δ = -15 < 0)
Άρα: y=6
Επομένως πριν από 6 χρόνια το γινόμενο των ηλικιών των παιδιών ήταν ίσο με την ηλικία της μητέρας.
Επαλήθευση:
Πριν 6 χρόνια ήταν:
Ηλικία μητέρας: 41–6 = 35 ετών
Ηλικίες παιδιών: 7–6=1έτους, 11–6=5ετών, και 13–6=7ετών αντίστοιχα, και το γινόμενο των ηλικιών τους ισούται με 1*5*7 = 35
Επαλήθευση:
(41–y) = (7–y)*(11–y)*(13–y) ---> 41-6=(7-6)*(11-6)*(13-6) ---> 35=1*5*7 ο.ε.δ.
Πηγή:
https://drive.google.com/file/d/0Bw22VI38b4XDalVsNks4SHpRY0k/view
Πηγή:
5ος Μαθηματικός Διαγωνισμός «Ο Επιμενίδης», Α΄ Γυμνασίου 29-10-2016